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A Bayesian Analysis of the Flood 

Frequency Hydrology Concept 
 

by Brian E. Skahill, Alberto Viglione, and Aaron Byrd 

PURPOSE: The purpose of this document is to demonstrate a Bayesian analysis of the flood 
frequency hydrology concept as a formal probabilistic-based means by which to coherently 
combine and also evaluate the worth of different types of additional data (i.e., temporal, spatial, 
and causal) in a flood frequency analysis. This approach is responsive to the stated ultimate goal 
of existing U.S. Army Corps of Engineers (USACE) policy guidance, which is probabilistic 
analysis of “all key variables, parameters, and components of flood damage reduction studies” 
(USACE 2006). This objective will be accomplished by independently revisiting components of 
an example originally profiled by Viglione et al. (2013). This technical note will also include a 
brief discussion of some potential opportunities for future related research and development. 

INTRODUCTION: Merz and Blöschl (2008a,b) proposed the concept of flood frequency 
hydrology, which emphasizes the importance of combining local flood data with additional types 
of temporal, spatial, and causal information using hydrologic reasoning to perform a flood 
frequency analysis at a site of interest. Temporal expansion involves the collection and 
consideration of information on flood behavior before or after the period of record of measured 
discharge. It accommodates short records that are not completely representative of a system’s 
flood behavior. Flood marks on buildings and paleoflood information are two types of temporal 
information expansion data. Spatial information expansion involves trading space for time by 
using flood information from neighboring systems, viz., a regional flood frequency analysis 
methodology such as the index flood method (Dalrymple 1960) to improve upon the flood 
frequency analysis at the site of interest. Introducing hydrologic understanding of local flood 
production factors is the goal of causal information expansion. The derived flood frequency 
approach (e.g., Eagleson 1972; Sivapalan et al. 1990; Rahman et al. 2002; Sivapalan et al. 2005), 
the Gradex method (Guillot 1972; Duband et al. 1994; Naghettini et al. 1996), and rainfall-runoff 
modeling are all examples of causal information expansion. 

With flood frequency hydrology, in estimating flood frequencies, the intent is to extract the 
maximum amount of information from all available complementary data sources and to combine 
the additional data types (i.e., temporal, spatial, and causal) using hydrologic reasoning. Merz and 
Blöschl (2008a,b) underscore that a key element of the combination process is to account for the 
uncertainty of the various pieces of information. Whereas Merz and Blöschl (2008a,b) relied upon 
heuristic hydrologic reasoning to combine the different data types, Viglione et al. (2013) revisited 
the flood frequency hydrology concept within a Bayesian analysis framework. In particular, they 
profiled the flood frequency hydrology concept by employing a Metropolis-Hastings (Metropolis 
et al. 1953; Hastings 1970) jumping rule based Bayesian Markov Chain Monte Carlo (MCMC) 
sampler to simultaneously optimize and infer the generalized extreme value (GEV) distribution 
parameters using a systematic discharge record, a systematic record plus one of each form of 
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information expansion (i.e., temporal, spatial, or causal), and a systematic record plus all forms of 
information expansion.  

Markov Chain Monte Carlo (MCMC) simulation is a formal Bayesian approach for estimating 
the posterior probability distribution of the specified adjustable model parameters, in this case, 
the GEV distribution parameters. It treats the specified adjustable model parameters as random 
variables and relies upon Bayes’ Theorem to compute their joint posterior probability 
distribution. Bayes’ Theorem effectively communicates that the posterior distribution is 
proportional to the product of the prior distribution, prescribed based on the modeler’s best 
judgment, expert opinion, or literature estimates, among possible others, and the likelihood 
function (i.e., the conditional distribution), which encapsulates the conditioning process with the 
observed dataset, which in this case is a systematic record of annual discharge maxima plus 
possibly one or more forms of information expansion. The idea behind MCMC simulation is that 
while one wants to compute a probability density, p(p|D), where p and D represent the vector of 
adjustable model parameters and the data/information imparted to the analysis, respectively, 
there is the understanding that such an endeavor may be impracticable. Additionally, simply 
being able to generate a large random sample from the probability density would be equally 
sufficient as knowing its exact form. Hence, the problem then becomes one of effectively and 
efficiently generating a large number of random draws from p(p|D). It was discovered that an 
efficient means to this end is to construct a Markov chain, a stochastic process of values that 
unfold in time, with the following properties: (1) the state space (set of possible values) for the 
Markov chain is the same as that for p; (2) the Markov chain is easy to simulate from; and (3) the 
Markov chain’s equilibrium distribution is the desired probability density p(p|D). The Gelman 
and Rubin (1992) quantitative measure is commonly employed to assist with diagnosis of chain 
convergence. A Markov chain with the above-mentioned properties can be constructed by 
choosing a symmetric proposal distribution and employing the Metropolis acceptance probability 
(Metropolis et al. 1953) to accept or reject candidate points. By constructing such a Markov 
chain, one can then run it to equilibrium (and this period is often referred to as the sampler burn-
in period) and subsequently sample from its stationary distribution. Within the context of its 
application to simultaneously optimize and infer the GEV distribution parameters using a 
systematic record and one or more forms of information expansion, the post burn-in random 
draws from p can be used to construct credible intervals for the estimated flood quantiles.  

Hence, by performing the flood frequency hydrology concept within a Bayesian analysis 
framework, a formal probabilistic-based and flexible means is employed not only for 
simultaneous optimization and inference but also for combining the different data types via 
application of Bayes’ theorem. A Bayesian analysis of the flood frequency hydrology concept 
dovetails with the stated goal of existing related USACE policy guidance. In particular, the 
USACE is required to perform risk and uncertainty analyses in the process of planning, design, 
and operation of all civil works flood risk management projects as described in Engineer 
Regulation (ER) 1105-2-101 (USACE 2006) and its cited references (e.g., Engineer Manual 
[EM] 1110-2-1619 [USACE 1996]). The risk-informed analysis framework presented in ER 
1105-2-101 (USACE 2006), jointly promulgated by the USACE Planning and Engineering 
communities of practice, requires acknowledgement of and accounting for error and uncertainty 
in the “key variables, factors, parameters, and data components” relevant to the planning and 
design of flood damage reduction projects. By capturing and quantifying “the extent of the risk 
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and uncertainty in the various planning and design components of an investment project,” it 
permits for an evaluation of the tradeoff between risks and costs.  

The Bayesian analysis of the flood frequency hydrology concept performed by Viglione et al. 
(2013) is independently revisited in this technical note using an adaptive population-based 
MCMC sampler (ter Braak and Vrugt 2008). The revisited Bayesian analysis contained in this 
technical note demonstrates a USACE capacity to combine additional information beyond that of 
the systematic record into a flood frequency analysis. The additional data types considered herein 
include historical and causal forms of information expansion. The casual information expansion 
data were derived by way of expert elicitation and in a formal probability-based fashion rather 
than simply arbitrarily. The systematic record and the additional data types imparted to the 
analysis are flexibly combined in an easily revisable manner that is consistent, throughout the 
entire analysis framework, with the previously mentioned need for probabilistic analysis for 
flood damage reduction studies within the USACE. 

The remainder of this technical note independently revisits pieces of the Bayesian analysis of the 
flood frequency hydrology concept performed by Viglione et al. (2013) for the 622 km2 Kamp at 
Zwettl river basin located in northern Austria. It not only underscores attributes of the method as 
applied to the Kamp at Zwettl but also discusses ways in which the approach compares with 
current practice. Moreover, it concludes by expressing some opportunities for related research 
and development.  

EXAMPLE: The 55-year record (1951–2005) of available annual discharge maxima for the 
Kamp at Zwettl river basin is of great interest by virtue of the 2002 extreme flood event. 
Excluding the 2002 flood by only considering the first 51 years of the systematic record results 
in an estimate for the 100-year flood runoff (Q100) of 159 m3/s and an assigned return period for 
the 2002 flood greater than 100,000 years. Whereas, the estimate for Q100 is 285 m3/s, and the 
2002 flood is assigned a return period of 340 years when all 55 years are employed to fit the 
GEV distribution parameters using the method of L-moments. Viglione et al. (2013) explored the 
flood frequency hydrology concept, via a Bayesian analysis, not only considering the first 51 
years but also the entire 55 years of the available systematic record to examine how well a flood 
of the magnitude of the 2002 event could be anticipated statistically prior to its occurrence. 
Elements of that complete analysis are revisited herein via application of Bayesian MCMC, not 
only considering the systematic record before and after the 2002 flood but also temporal 
information expansion, causal information expansion, and a combination of the temporal and 
causal information expansions. In particular, eight distinct primary MCMC simulations were 
performed, as listed in Table 1, to simultaneously optimize and infer the GEV distribution 
parameters using data of the Kamp at Zwettl. Viglione et al. (2013) summarize the assumptions 
made in the Bayesian analysis. 

Systematic Data. The first two MCMC simulations listed in Table 1 solely consider the 
systematic record for the Kamp at Zwettl, either up to 2001, just before the 2002 flood event 
(i.e., 1951–2001), or the complete available record (i.e., 1951–2005). In either case, an 
uninformed uniform prior distribution is employed as well as a likelihood function of the form 

      s
s x ii

l D l D f x


  1
p p p  (1) 
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Table 1. Summary of Kamp at Zwettl data employed for each of the eight 
distinct MCMC simulations. 
MCMC 
simulation Data of the Kamp at Zwettl 

1 Systematic data (1951-2001) 
2 Systematic data (1951-2005) 
3 Systematic data (1951-2001) + temporal information expansion 
4 Systematic data (1951-2005) + temporal information expansion 
5 Systematic data (1951-2001) + causal information expansion 
6 Systematic data (1951-2005) + causal information expansion 
7 Systematic data (1951-2001) + temporal + causal information expansion 
8 Systematic data (1951-2005) + temporal + causal information expansion 

where D is the sample set of recorded annual discharge maxima, ix ; s is the record size; and f  is 
the three parameter p = (p1, p2, p3) GEV distribution (p1, p2, and p3 represent the location, shape, 
and scale parameters, respectively). The flood frequency curves presented in Figure 1 and Figure 2 
were obtained by applying MCMC using the systematic data up to 2001, and also the entire 
systematic data record, respectively. In each figure, the flood frequency curve estimates shown 
correspond to the posterior mode (PM) (i.e., the GEV with p that maximizes p(p|D)) and the 
computed 90% credible intervals, which are subdomains of the predictive distributions, 
characterized by the postburn-in random draws, for a given return period or peak discharge. For 
each simulation, Table 2 lists the PM estimates for the GEV parameters and also for Q100, Q1000, 
and their corresponding computed 90% credible intervals. The probability that Q100/Q1000 lies 
within the 90% credible bounds specified in Table 2, given the data to support each distinct 
Bayesian analysis, is in each case 0.9.  

Temporal Information Expansion. The next two MCMC simulations listed in Table 1 (i.e., 
simulations 3 and 4) that involve temporal information expansion considered three historical 
floods ( y1 , y2 , and y3 ; k  3 ) that occurred in 1655, 1803, and 1829 during the historical 
period of 1600 through 1950. It is assumed that the specified threshold of X 0 300  m3/s is 
only exceeded k times during the defined historical period of h years (h = 350 = 1950 – 1600). 
The specified perception threshold is the maximum possible value of the smallest of the three 
historic events. Uncertainty bounds given by ,

j jL Uy y 
    for ,...,j k1 , and equal to %25  of 

the estimated peak discharges, based on expert judgment, are designated for each historic event 
(Wiesbauer 2004, 2007). The likelihood function representing the joint probability of occurrence 
of recent ( sl ) and historical ( Hl ) flood observations is given by 

      s Hl D p l D p l D p   (2) 

where sl  is given by equation (1), F below denotes the cumulative of f , and 

          j j

h h k k
H x x u x Ljk

l D F X F y F y




          0 1
p p p p  (3) 
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Figure 1. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2001. The continuous line corresponds to the PM estimate. The 5% and 95% credible 
bounds are shown as dashed lines. (cms = m3/s)  

Table 2. For each MCMC simulation, the computed PM estimate for the GEV parameters 
and also for Q100 and Q1000, including their 90% credible bounds, at the Kamp. The 
last column includes the PM-based estimate for the return period, T, in years for a flood 
equal in magnitude to the 2002 flood event. 

MCMC 
simulation 

GEV Parameters Q100 (m3/s) Q1000 (m3/s) T (years) 
p1 p2 p3 PM 5% 95% PM 5% 95% PM 

1 42.9 20.2 -0.096 160 130 288 241 183 649 84674 
2 41.7 20.7 -0.310 253 184 542 543 317 1853 598 
3 43.4 21.7 -0.222 217 176 291 399 278 647 1752 
4 42.6 21.5 -0.281 244 197 331 497 347 818 767 
5 41.9 21.0 -0.313 258 193 307 557 335 702 557 
6 41.6 20.8 -0.333 269 217 317 604 418 747 454 
7 42.7 21.8 -0.291 253 206 299 527 369 671 643 
8 42.5 21.5 -0.313 264 220 308 571 418 708 517 
9 43.3 21.7 -0.234 223 179 293 419 287 653 1423 
10 42.6 21.5 -0.288 249 201 323 514 352 775 694 
11 42.5 21.7 -0.322 271 251 298 598 532 647 458 
12 42.4 21.6 -0.325 272 252 298 602 538 653 451 
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Figure 2. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2005. The continuous line corresponds to the PM estimate. The 5% and 95% credible 
bounds are shown as dashed lines. (cms = m3/s) 

The likelihood function  pl D  of Equation (2) combines three terms: (1) the probability density 
function of the s systematic data; (2) the probability of observing no events above the perception 
threshold for h k  years; and (3) the probability of observing k  historical events between the 
specified lower and upper bounds. As with the first two MCMC simulations, an uninformative 
uniform prior is utilized. The flood frequency curves presented in Figure 3 and Figure 4 were 
obtained via application of MCMC and considering the systematic and temporal information 
expansion data until 2001 and until 2005, respectively. Table 2 lists the PM estimates for the GEV 
parameters and also for Q100, Q1000, and their corresponding computed 90% credible intervals. 

Causal Information Expansion. Viglione et al. (2013) explored the inclusion of causal 
information expansion data within the flood frequency hydrology concept for the Kamp, via 
Bayesian analysis, by incorporating information derived from expert judgment regarding the 500-
year flood peak. Coles and Tawn (1996) studied the elicitation and formulation of prior 
information for a Bayesian analysis of extreme rainfall. They elicited prior information in terms of 
extreme quantiles, arguing it to be far more realistic to expect an expert to meaningfully quantify 
their prior beliefs about extremal behavior rather than the distribution’s parameters. For this 
analysis, expert elicitation, based on rainfall-runoff modeling with artificial rainfall series, and the 
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expert’s familiarity with the system resulted in an estimate for Q500 of 480 m3/s %20 , which was 
reformulated, working together with the expert, to be given by 

    ,k Q N μ σ500 500 500  (4) 

where μ 500 480  m3/s; σ 500 80  m3/s; and N denotes the normal distribution. The GEV 
quantile with 500-year return period is given by 

  p
p

p
p

p
Q g ln

                

3

2
500 1

3

5001
500 1

 (5) 

 
Figure 3. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2001, including temporal information expansion data, also shown. The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 

In this case, during MCMC simulation, the likelihood function  pl D  is multiplied by   pk g  
to calculate p. The flood frequency curves presented in Figures 5 and 6 were obtained via 
application of MCMC and considering the systematic and causal information expansion data 
until 2001 and until 2005, respectively. Table 2 lists the PM estimates for the GEV parameters 
and also for Q100, Q1000, and their corresponding computed 90% credible intervals. 
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Figure 4. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2005, including temporal information expansion data, also shown. The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 

Combination of Data. Viglione et al. (2013) underscore the appeal of a Bayesian analysis of 
the flood frequency hydrology concept, viz., the capacity to combine and account for all of the 
different information together. Bayesian MCMC was applied to combine the systematic data 
together with the temporal and causal information expansion data. In this case, 

         s Hp D l D l D k g  p p p p  (6) 

The results of these two MCMC simulations (i.e., 7 and 8) are shown in Figures 7 and 8, and also 
in Table 2. Four additional MCMC simulations were also performed to explore the impact of 
varying the standard deviation associated with the expert’s estimate for Q500. MCMC simulations 
9/11 and 10/12 combined the systematic data record (until 2001 and also until 2005) together 
with the temporal and causal information expansion data considering a value of 

/ .σ 500 240 26 7  m3/s for the causal information expansion data. The results of these four 
additional MCMC simulations are presented in Figures 9–12 and also in Table 2. 
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Figure 5. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2001, including causal information expansion. The expert guess for Q500 is shown along 
with its 5% and 95% quantiles (σ 500 80 m3/s). The continuous line corresponds to the PM 
estimate. The 5% and 95% credible bounds are shown as dashed lines. (cms = m3/s) 
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Figure 6. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2005, including causal information expansion. The expert guess for Q500 is shown along 
with its 5% and 95% quantiles (σ 500 80 m3/s). The continuous line corresponds to the PM 
estimate. The 5% and 95% credible bounds are shown as dashed lines. (cms = m3/s) 
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Figure 7. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2001, including temporal and causal information expansion data. The temporal 
information expansion data is shown, including uncertainty. The expert guess for Q500 is 
shown along with its 5% and 95% quantiles (σ 500 80 m3/s). The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 
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Figure 8. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2005, including temporal and causal information expansion data. The temporal 
information expansion data is shown, including uncertainty. The expert guess for Q500 is 
shown along with its 5% and 95% quantiles (σ 500 80 m3/s). The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 
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Figure 9. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2001, including temporal and causal information expansion data. The temporal 
information expansion data is shown, including uncertainty. The expert guess for Q500 is 
shown along with its 5% and 95% quantiles (σ 500 80 m3/s). The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 



ERDC/CHL CHETN-X-1 
February 2016 

14 

 
Figure 10. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2005, including temporal and causal information expansion data. The temporal 
information expansion data is shown, including uncertainty. The expert guess for Q500 is 
shown along with its 5% and 95% quantiles (σ 500 240 m3/s). The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 
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Figure 11. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2001, including temporal and causal information expansion data. The temporal 
information expansion data is shown, including uncertainty. The expert guess for Q500 is 
shown along with its 5% and 95% quantiles ( .σ 500 26 7m3/s). The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 
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Figure 12. Bayesian fit of the GEV distribution to the systematic data record of the Kamp at Zwettl for 

1951–2005, including temporal and causal information expansion data. The temporal 
information expansion data is shown, including uncertainty. The expert guess for Q500 is 
shown along with its 5% and 95% quantiles ( .σ 500 26 7m3/s). The continuous line 
corresponds to the PM estimate. The 5% and 95% credible bounds are shown as dashed 
lines. (cms = m3/s) 

DISCUSSION: This technical note has succinctly revisited parts of a Bayesian analysis of the 
flood frequency hydrology concept originally performed by Viglione et al. (2013) for the 622 
km2 Kamp at Zwettl river basin located in northern Austria. Eight primary MCMC simulations 
were performed to examine the impacts of combining different but complementary data sources 
relevant to flood frequency curve estimation before and after the 2002 flood event in the Kamp, 
viz., the systematic data record, historic flood information, and expert elicitation for Q500 derived 
from rainfall-runoff modeling analysis in the Kamp, and regionally.  

The first two MCMC simulations only considered the systematic data record, until 2001, and 
also until 2005. Flood quantile estimates, including their computed 90% credible intervals, as 
depicted in Figures 1 and 2 and also listed in Table 2, differ significantly across these two 
simulations not only by virtue of the brief record of observations in either case but also because 
the value of the 2002 flood departs significantly from the remainder of the record. The range of 
the computed 90% credible intervals plotted in Figures 1 and 2 and also listed in Table 2 for Q100 
and Q1000 clearly underscores a high degree of uncertainty for the flood quantile estimates 
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associated with each simulation, again, attributed to the short systematic data record. The PM 
estimates derived from MCMC simulations 1 and 2 for the return period of a flood equal in 
magnitude to the 2002 flood event is ~85,000 years and 598 years, respectively. These results, 
albeit derived by only considering the systematic data record, clearly underscore that estimates 
may quickly become dated, and moreover, the importance of combining additional sources of 
data relevant to frequency curve estimation. 

Including the historical flood information significantly improved upon the agreement of the 
estimates computed before and after the 2002 flood, including their computed 90% credible 
interval bounds, more so for return periods less than 100 years than for larger return periods. The 
PM estimates for Q100 differ by 12%; whereas, the PM estimates for Q1000 differ by 25%. For 
MCMC simulations 3 and 4, not only is there better agreement of the their computed 90% 
credible interval bounds relative to the first two simulations, but the ranges are decreased in each 
case as well, indicating improved estimation of the GEV distribution parameters by virtue of 
inclusion of the additional temporal information expansion data into the Bayesian MCMC 
supervised optimization and inference process. While the PM-based return period estimates from 
MCMC simulations 1 and 2 for a flood equal in magnitude to the 2002 flood differed by two 
orders of magnitude, upon consideration of the temporal information expansion data, they now 
differ by approximately a factor of 2. 

Comparison of the results obtained by incorporating the causal information expansion data (i.e., 
MCMC simulations 5 and 6) with the results from the previous two MCMC simulations that 
included the historical flood information (i.e., MCMC simulations 3 and 4) indicates improved 
agreement of the flood quantile estimates before and after the 2002 flood event, including for the 
larger return periods. In this case (i.e., MCMC simulations 5 and 6), the PM estimates for Q100 
and Q1000 before and after the 2002 flood event differ by 4% and 8%, respectively. The PM-
estimated return period values for a flood equal in magnitude to the 2002 flood event now only 
differ by 23%. 

Combining the systematic data record together with both the temporal information expansion and 
causal information expansion data (i.e., MCMC simulations 7 and 8) did not result in any further 
improvement with respect to agreement of the flood quantile estimates, including their computed 
and reported 90% credible interval bounds, before and after 2002, when compared with the 
results obtained by simply considering the causal information expansion data (i.e., MCMC 
simulations 5 and 6). However, by also considering the historical flood information together with 
the systematic data record and the expert’s estimate for Q500 in the Bayesian MCMC analysis, the 
influence of the temporal information expansion data is clearly evident upon comparing the 
results encapsulated in Figure 5/6 with Figure 7/8. In particular, it uniformly shifts the flood 
quantile estimates slightly toward the historical flood information imparted to the analysis. The 
flood frequency estimates obtained by combining the three data sources via Bayesian MCMC 
analysis differ only modestly before and after 2002. In this case, the PM estimated 100-year 
flood peak at Zwettl before and after 2002 is 253 m3/s and 264 m3/s, respectively. The PM-based 
estimated return periods before and after 2002 for a flood equal in magnitude to the 2002 flood 
event are 643 years and 517 years, respectively.  
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Figure 13 and Figure 14 are distributions for Q100 and Q1000 derived from the Bayesian MCMC 
simulations 7 and 8. Uncertainty for these two flood quantiles, resultant from the specified 
component parts of the Bayesian analysis (e.g., the prior distribution and likelihood function), is 
explicitly presented in these Figures. MCMC simulations 7 and 8 differ only by virtue of the 
additional 4 years (2002–2005) of the systematic data record included in simulation 8. The 
observed slight translation to the right for the distributions associated with simulation 8 in 
Figure 13 and Figure 14 is attributed to the inclusion of the 2002 flood event in the eighth 
simulation. Of importance, although as previously mentioned dependent upon the component parts 
of the Bayesian analysis, the statistical difference in estimating these two flood quantiles before 
and after the 2002 flood event is encapsulated in these two Figures. For example, combining the 
three different data sources via the Bayesian MCMC simulations 7 and 8, the resultant estimated 
probability that the 1000-year flood peak at Zwettl is between 450 and 650 m3/s is 0.68 before 
2002 and 0.75 afterwards. The results presented in Figures 13 and 14, associated with MCMC 
simulations 7 and 8 that combined the three different data sources, provide an opportunity to make 
two important points regarding the Bayesian analysis approach. These include (1) the flexibility 
and ease with which it can be employed to coherently combine different types of data, including 
their uncertainty, relevant to the frequency curve estimation and uncertainty analysis (see Viglione 
et al. [2013] and references cited therein for additional discussion regarding ways with which to 
combine different data sources), and (2) that the outcome of its application is a set of random 
draws from p(p|D), which can be used to make formal probabilistic-based inferences regarding 
functions of p, such as the flood quantiles. This approach avoids any reliance on arbitrary 
computations to derive the final flood quantile estimates from multiple data sources, including their 
uncertainties, which can potentially confound their meaning. A Bayesian analysis of the flood 
frequency hydrology concept (Viglione et al. 2013) meshes well with the previously mentioned 
requirements outlined in existing USACE policy guidance for flood damage reduction studies. 

The four additional MCMC simulations (i.e., 9–12), which also combined all three data sources, 
were designed, simply for purposes of demonstration, to simulate the effect of including poor 
and excellent local flood production process understanding relative to the base case originally 
profiled by Viglione et al. (2013), which was arbitrarily deemed categorically as good. MCMC 
simulations 9/10 and 11/12 as designed differ from simulations 7/8 only by specification of σ500 , 
the specified standard deviation associated with the assumed normal distribution for the 500-year 
flood runoff, whose mean value is equal to 480 m3/s. The results associated with MCMC 
simulations 7/8, 9/10, and 11/12 notably differ. The results associated with simulations 9 and 10, 
which incorporated the poor causal information expansion data, are dominated by the historical 
flood information for larger return periods; whereas, the results for simulations 11 and 12, which 
incorporated the excellent local flood production process understanding into the Bayesian 
analysis are dominated by the causal information expansion data at the larger return periods. 
While simply illustrative, the results obtained from the final four MCMC simulations emphasize 
the importance to correctly quantify, insofar as is possible, the uncertainties of the data to be 
combined via the Bayesian analysis. 
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Figure 13. Distributions of Q100 associated with MCMC simulations 7 and 8. 
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Figure 14. Distributions of Q1000 associated with MCMC simulations 7 and 8. 

CONCLUSIONS: The content of this document has demonstrated a new USACE capacity to 
perform a Bayesian analysis of the flood frequency hydrology concept by independently 
revisiting parts of the example originally profiled by Viglione et al. (2013) for the 622 km2 
Kamp at Zwettl river basin located in northern Austria. A Bayesian analysis of the flood 
frequency hydrology concept is attractive in that it permits one to flexibly and coherently 
combine multiple, independent data sources relevant to a flood frequency analysis, including the 
systematic record, and also, dependent upon availability, temporal, spatial, and causal 
information expansion data. In addition, its assumptions are made explicit, and the analysis is 
repeatable and revisable. Moreover, its application provides a basis to make formal probabilistic-
based inferences regarding the flood quantiles. A Bayesian analysis of the flood frequency 
hydrology concept satisfies the requirements of existing USACE policy guidance regarding flood 
damage reductions studies, viz., a probabilistic analysis of “all key variables, parameters, and 
components of flood damage reduction studies” (USACE 2006). 

In this technical note, multiple Markov Chain Monte Carlo simulations were performed to 
combine a brief systematic record with historical flood data and information pertaining to local 
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flood production process understanding, obtained via expert elicitation, in different ways, to 
simultaneously optimize and infer the posterior distribution of the GEV distribution parameters 
implied by each Bayesian modeling analysis. It is underscored to the reader for clarity that 
distributions other than the GEV could easily be considered within the Bayesian analysis 
framework. Moreover, it is flexible in that the different data sources can be combined in many 
ways other than the one approach profiled herein (Viglione et al. 2013). While possibly mediated 
by the consideration of an additional data source, viz., spatial expansion information, the four 
supplemental MCMC simulations that explored the impact of varying the standard deviation 
associated with the causal information expansion data source nonetheless underscored the 
importance of correctly quantifying and assigning the appropriate uncertainty values to the 
separate pieces of information imparted to the Bayesian analysis.  

Two potential related USACE civil works research and development opportunities include the 
following: 

1. Explore the consideration of land use and/or climate change within the Bayesian analysis of 
the flood frequency hydrology concept framework, likely via causal information expansion 
data obtained from rainfall-runoff modeling and/or a time dependency treatment of the 
distribution’s parameters. 

2. Incorporate an implementation of the Bayesian analysis of the flood frequency hydrology 
concept into the Hydrologic Engineering Center’s Statistical Software Package (HEC-SSP) 
tool (USACE 2010) (e.g., to support analyses in item 1 directly above and/or a user-defined 
method option for computing uncertainty when combining multiple data sources). 

ADDITIONAL INFORMATION: This CHETN was prepared as part of the Extreme Hydrologic 
Events work unit in the Infrastructure R&D Program and was written by Dr. Brian E. Skahill 
(Brian.E.Skahill@usace.army.mil) and Dr. Aaron Byrd (Aaron.R.Byrd@usace.army.mil) of the 
U.S. Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics 
Laboratory (CHL), and Dr. Alberto Viglione (viglione@hydro.tuwien.ac.at) of the Institute of 
Hydraulic Engineering and Water Resources Management at the Vienna University of 
Technology. The Program Manager is Dr. Cary Talbot, and the Technical Director is William 
Curtis. This CHETN should be cited as follows:  

Skahill, B. E., A.Viglione, and A. R. Byrd. 2016. A Bayesian analysis of the flood 
frequency hydrology concept. ERDC/CHL CHETN-X-1. Vicksburg, MS: U.S. 
Army Engineer Research and Development Center. http://chl.erdc.usace.army. 
mil/chetn 
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